Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Genom Precis Med ; 16(5): 421-430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37671549

RESUMO

BACKGROUND: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Distrofina , Adulto , Humanos , Masculino , Feminino , Distrofina/genética , Hibridização Genômica Comparativa , Linhagem , Genótipo , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
2.
Circ Cardiovasc Genet ; 6(3): 238-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23661673

RESUMO

BACKGROUND: The transcription factor NKX2-5 is crucial for heart development, and mutations in this gene have been implicated in diverse congenital heart diseases and conduction defects in mouse models and humans. Whether NKX2-5 mutations have a role in adult-onset heart disease is unknown. METHODS AND RESULTS: Mutation screening was performed in 220 probands with adult-onset dilated cardiomyopathy. Six NKX2-5 coding sequence variants were identified, including 3 nonsynonymous variants. A novel heterozygous mutation, I184M, located within the NKX2-5 homeodomain, was identified in 1 family. A subset of family members had congenital heart disease, but there was an unexpectedly high prevalence of dilated cardiomyopathy. Functional analysis of I184M in vitro demonstrated a striking increase in protein expression when transfected into COS-7 cells or HL-1 cardiomyocytes because of reduced degradation by the Ubiquitin-proteasome system. In functional assays, DNA-binding activity of I184M was reduced, resulting in impaired activation of target genes despite increased expression levels of mutant protein. CONCLUSIONS: Certain NKX2-5 homeodomain mutations show abnormal protein degradation via the Ubiquitin-proteasome system and partially impaired transcriptional activity. We propose that this class of mutation can impair heart development and mature heart function and contribute to NKX2-5-related cardiomyopathies with graded severity.


Assuntos
Cardiomiopatias/genética , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Cardiomiopatias/metabolismo , Chlorocebus aethiops , Feminino , Cardiopatias Congênitas/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/química , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Miócitos Cardíacos/metabolismo , Linhagem , Proteólise , Alinhamento de Sequência , Fatores de Transcrição/química , Ativação Transcricional , Adulto Jovem
3.
J Am Coll Cardiol ; 60(16): 1566-73, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22999724

RESUMO

OBJECTIVES: The goal of this study was to characterize a variant in the SCN5A gene that encodes the alpha-subunit of the cardiac sodium channel, Nav1.5, which was identified in 1 large kindred with dilated cardiomyopathy (DCM) and multiple arrhythmias, including premature ventricular complexes (PVCs). BACKGROUND: Treatment guidelines for familial DCM are based on conventional heart failure therapies, and no gene-based interventions have been established. METHODS: Family members underwent clinical evaluation and screening of the SCN5A and LMNA genes. Cellular electrophysiology and computational modeling were used to determine the functional consequences of the mutant Nav1.5 protein. RESULTS: An R222Q missense variant located in a Nav1.5 voltage-sensing domain was identified in affected family members. Patch-clamp studies showed that R222Q Nav1.5 did not alter sodium channel current density, but did left shift steady-state parameters of activation and inactivation. Using a voltage ramp protocol, normalized current responses of R222Q channels were of earlier onset and greater magnitude than wild-type channels. Action potential modeling using Purkinje fiber and ventricular cell models suggested that rate-dependent ectopy of Purkinje fiber origin is the predominant ventricular effect of the R222Q variant and a potential cause of DCM. In R222Q carriers, there were only modest responses to heart failure therapies, but PVCs and DCM were substantially reduced by amiodarone or flecainide, which are drugs that have sodium channel-blocking properties. CONCLUSIONS: The R222Q SCN5A variant has an activating effect on sodium channel function and is associated with reversible ventricular ectopy and DCM. Elucidation of the genetic basis of familial DCM can enable effective gene-targeted therapy to be implemented.


Assuntos
Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Complexos Ventriculares Prematuros/genética , Adulto , Idoso de 80 Anos ou mais , Animais , Células CHO , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/fisiopatologia , Cricetinae , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fenótipo , Ramos Subendocárdicos/fisiopatologia , Complexos Ventriculares Prematuros/tratamento farmacológico , Complexos Ventriculares Prematuros/fisiopatologia , Adulto Jovem
4.
J Am Coll Cardiol ; 59(11): 1017-25, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22402074

RESUMO

OBJECTIVES: The aim of this study was to evaluate the role of cardiac K(+) channel gene variants in families with atrial fibrillation (AF). BACKGROUND: The K(+) channels play a major role in atrial repolarization but single mutations in cardiac K(+) channel genes are infrequently present in AF families. The collective effect of background K(+) channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. METHODS: Genes encoding the major cardiac K(+) channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. RESULTS: Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K(+) channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K(+) channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. CONCLUSIONS: Families with AF show an excess of rare functional K(+) channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.


Assuntos
Fibrilação Atrial/genética , Epistasia Genética , Canais de Potássio/genética , Potenciais de Ação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Variação Genética , Sistema de Condução Cardíaco/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Análise de Sequência de DNA , Adulto Jovem
5.
Am J Hum Genet ; 81(2): 280-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17668378

RESUMO

The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.


Assuntos
Cardiomiopatias/genética , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Proteínas com Domínio T/genética , Adolescente , Adulto , Idoso , Cardiomiopatia Dilatada/genética , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Coração , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Linhagem
6.
J Am Coll Cardiol ; 49(5): 578-86, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17276182

RESUMO

OBJECTIVES: This study sought to evaluate mutations in genes encoding the slow component of the cardiac delayed rectifier K+ current (I(Ks)) channel in familial atrial fibrillation (AF). BACKGROUND: Although AF can have a genetic etiology, links between inherited gene defects and acquired factors such as atrial stretch have not been explored. METHODS: Mutation screening of the KCNQ1, KCNE1, KCNE2, and KCNE3 genes was performed in 50 families with AF. The effects of mutant protein on cardiac I(Ks) activation were evaluated using electrophysiological studies and human atrial action potential modeling. RESULTS: One missense KCNQ1 mutation, R14C, was identified in 1 family with a high prevalence of hypertension. Atrial fibrillation was present only in older individuals who had developed atrial dilation and who were genotype positive. Patch-clamp studies of wild-type or R14C KCNQ1 expressed with KCNE1 in CHO cells showed no statistically significant differences between wild-type and mutant channel kinetics at baseline, or after activation of adenylate cyclase with forskolin. After exposure to hypotonic solution to elicit cell swelling/stretch, mutant channels showed a marked increase in current, a leftward shift in the voltage dependence of activation, altered channel kinetics, and shortening of the modeled atrial action potential duration. CONCLUSIONS: These data suggest that the R14C KCNQ1 mutation alone is insufficient to cause AF. Rather, we suggest a model in which a "second hit", such as an environmental factor like hypertension, which promotes atrial stretch and thereby unmasks an inherited defect in ion channel kinetics (the "first hit"), is required for AF to be manifested. Such a model would also account for the age-related increase in AF development.


Assuntos
Fibrilação Atrial/genética , Canal de Potássio KCNQ1/genética , Mutação de Sentido Incorreto/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/fisiopatologia , Estudos de Coortes , Feminino , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...